What Does Real-Time Fraud Detection Mean?

Real-time fraud detection is the real-time execution of fraud-detection algorithms in order to detect fraudulent activities on credit cards and other financial payment systems. It makes use of real-time data analysis such as forensic analytics and predictive analytics to determine if an ongoing transaction is legitimate or not. Though the system is not perfect, it has reduced fraud losses in the U.S. by 70 percent since 1992, when real-time fraud detection was introduced.

Techopedia Explains Real-Time Fraud Detection

Fraud detection in the simplest form is simply outlier detection, which is determining whether an event such as a purchase using a credit card occurs outside of the normal circumstances or habits of the person using it. Real-time fraud detection is just the execution of fraud detection algorithms right as the purchase is happening. The system is not perfect and a lot of false positives are captured, but this just ensures that fraud is detected immediately and possibly prevented outright. For example, a man that has exclusively been using his credit card to purchase gadgets online suddenly purchases women’s lingerie in a store from a town far away from his home. This would immediately register as an outlier occurrence because it deviates so much from the person’s purchasing habits, and depending on the credit card issuer, the transaction might be blocked or the person would get a call immediately afterwards from a representative in order to confirm whether the recent purchase was legitimate or not.